The Green Lab Introduction to the course

Ivano Malavolta

ICT is unsustainable

Total number of views:

4.8b

Total energy per view:

0.2 kWh

Total energy consumed: ~835 GWh in less than 7

years

Where does this energy go?

Battery charge efficiency: 90%

CPU: 500 - 2,000 mW

GSM: 800 mW

Display: 400 mW

GPS: 176 mW

Gyroscope: 130 mW

Microphone: 101 mW

Bluetooth: 100 mW

Accelerometer: 21 mW

Where does this energy go?

$$PUE = \frac{Total Facility Energy}{IT Equipment Energy}$$

Energy loss:

Low utilization

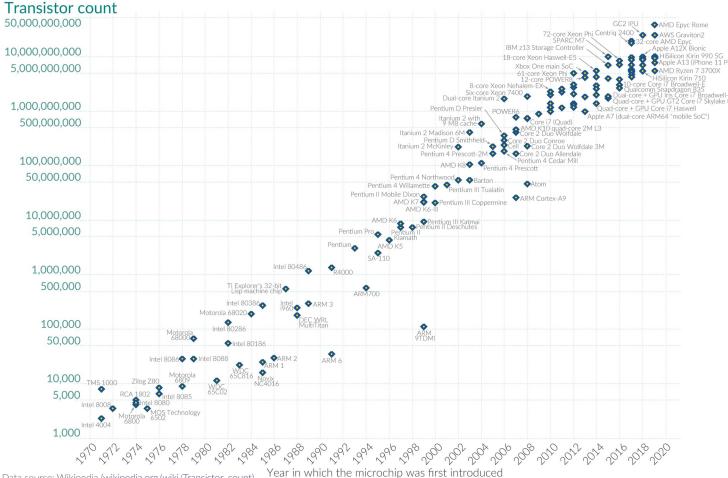
Min utilization rate:

10%

Max utilization rate:

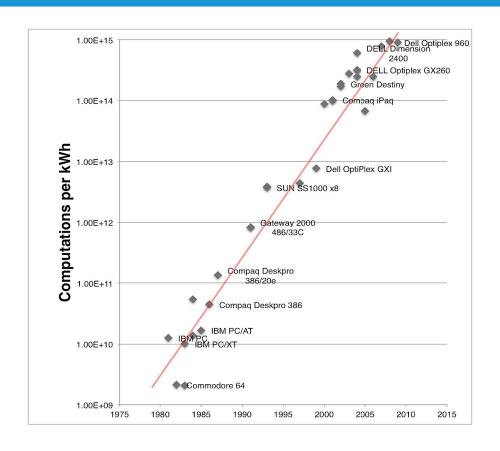
80%

- Cooling
- Lighting



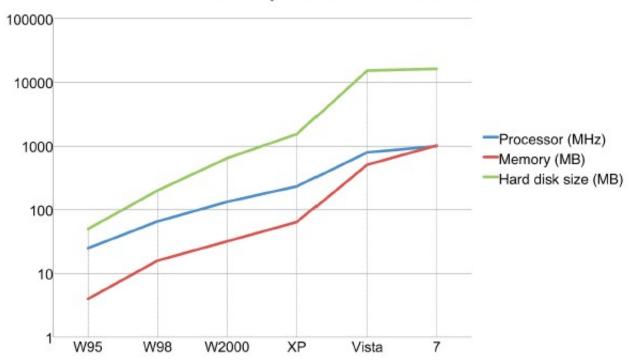
Moore's law

Moore's Law: The number of transistors on microchips doubles every two years Our World



Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important for other aspects of technological progress in computing – such as processing speed or the price of computers.

Is hardware energy-efficient?


"The energy efficiency of hardware doubles every 1.5 years"

(Koomey's law)

Ok, so what about **software**?

Hardware requirements of Windows versions

"Software gets slower more rapidly than hardware gets faster"

(Wirth's law)

Why is software consuming more and more?

- **1. Software is a gas**Software always expands to fit whatever container it is stored in
- 2. Software grows until it becomes limited by Moore's Law
 The initial growth of software is rapid, like gas expanding, but is
 inevitably limited by the rate of increase in hardware speed
- 3. Software growth makes Moore's Law possible People buy new hardware because the software requires it
- 4. Software is only limited by human ambition and expectation

We'll always find new algorithms, new applications, and new users

Let's touch the problem

Battery Drainer

The Green Lab

Code: X_418158

Period: 1 (September-October)

ECTS: 6.0

Language: English

Technically challenging: YES!

What this course is about

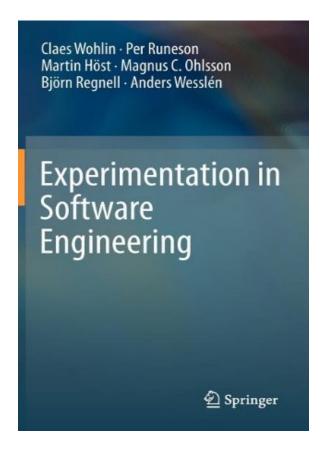
- MAIN GOAL to learn about:
 - energy efficiency of software
 - empirical software engineering
 - data-driven
 - the experimental process
- Build a successful experiment in the lab
 - software measurement
 - Data analysis with R
 - Data visualization with R
 - How to write a scientific report

Course schedule

wk		Tuesdays		Fridays	Assignments
1	Tue 05/09 - 11:00 WN-Q112	L1 - Introduction to the course; Example of team project; Intro to empirical software engineering [Ivano]	Fri 08/09 - 9:00 WN-D107	L2 - Experimental Process; GQM [Ivano]	
2	Tue 12/09 - 11:00 WN-Q112	LAB1 - Lab environment, tools, and devices (Android/Experiment Runner) [Radu]	Fri 15/09 - 9:00 WN-D107	L3 - How to design and develop green software [Vincenzo]	GQM (deadline: 15/09 - 23:59)
3	Tue 19/09 - 9:00 HG-02A00	L4 - Experiment planning; Subjects and variable selection; Measurement theory basics [Ivano]			
3	Tue 19/09 - 11:00 WN-Q112	L5 - Experiment Design (basics and advanced) [Ivano]			
4	Tue 26/09 - 11:00 WN-Q112	L6 - Data Analysis; Hypothesis Testing [Ivano]	Fri 29/09 - 9:00 WN-D107	LAB2 - R in practice [Theodore]	Experiment design (deadline: 29/09 - 23:59)
5	Tue 03/10 - 11:00 WN-Q112	L7 - Statistical Tests [Ivano]	Fri 06/10 - 9:00 WN-D107	LAB3 - Statistical tests with R [Theodore]	
6	Tue 10/10 - 11:00 WN-Q112	L8 - Data Visualization [Ivano]	Fri 13/10 - 9:00 WN-D107	LAB4 - Data visualization in R with ggplot2 [Theodore]	
7	Tue 17/10 - 9:00 HG-02A00	L9 - Experiment Reporting; Validity evaluation [Ivano]			
,	Tue 17/10 - 11:00 NU-4C51 (Theater 9)	Guest lecture			
8		FINALIZE PI	ROJECT		Final report (deadline: 20/10 - 23:59)

2 types of lectures

- Theory
- Labs


A typical lecture

- ~5 minutes
 - discussion about the previous lecture/lab
 - questions about how it went, feeling about the tools, problems, ideas, etc.
- ~1.5 hours
 - lecturing, giving and explaining examples, moderation of possible discussions
- ~5 minutes
 - wrap up, discussion of reading material, look forward to the next phases of the course

Each lecture will be your compass, not your book

Textbook

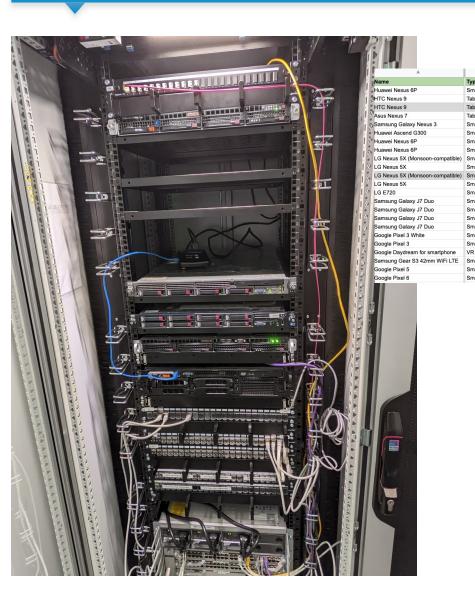
Experimentation in Software Engineering

by Anders Wesslén, Björn Regnell, Claes Wohlin, Magnus C. Ohlsson, and Martin Host

http://link.springer.com/book/10.1007%2F978-3-642-29044-2

It is also available on Canvas

Additional books also available on Canvas, use them as manuals


A typical Lab session

- ~5 minutes
 - discussion about the previous lecture
- ~40 minutes
 - the TA shows you how to use the tools
 - explanation of a simple exercise and its execution in an interactive manner
 - the source code of the exercise will be available on Canvas
- ~45 minutes
 - you will work on a small hands-on exercise
 - you can ask questions at any time to the instructor, thus solving your problems <u>"on-demand"</u>
 - bring your own laptop

MANDATORY ATTENDANCE

The Green Lab is also a physical place

В	C	D	E	F	G	Н	1	J
уре	Technical spec	СРИ	Memory	Android	Trepn	Batterystats	Released	Rooted?
martphone	http://www.gsmarena.co	Qualcomm MSM8994 Snapdragon 810 - Octa-core 1.5+2.0 GHz	3Gb	6.0.1	Yes	Yes	2015	Yes
ablet	http://www.gsmarena.co	Nvidia Tegra K1 - Dual-core 2.3 GHz Denver	2Gb	5.1.1	Yes	No	2014	
ablet	http://www.gsmarena.co	Nvidia Tegra K1 - Dual-core 2.3 GHz Denver	2Gb	6.0.1	Yes	No	2014	
ablet	http://www.gsmarena.co	Qualcomm Snapdragon S4Pro - Quad-core 1.5 GHz Krait	2Gb	6.0.1	Yes	Yes	2013	
martphone	http://www.gsmarena.co	TI OMAP 4460 - Dual-core 1.2 GHz Cortex-A9	1Gb	4.4.4	No	No	2011	
martphone	http://www.gsmarena.co	Qualcomm MSM7227A Snapdragon S1 - 1.0 GHz Cortex-A5	512Mb	4.0.3	No	No	2012	
martphone	http://www.gsmarena.co	Qualcomm MSM8994 Snapdragon 810 - Octa-core 1.5+2.0 GHz	3Gb	8.1.0	Yes	Yes	2015	
martphone	http://www.gsmarena.co	Qualcomm MSM8994 Snapdragon 810 - Octa-core 1.5+2.0 GHz	3Gb	6.0.0	Yes	Yes	2015	
martphone	https://www.gsmarena.c	Hexa-core (4x1.4 GHz Cortex-A53 & 2x1.8 GHz Cortex-A57)	2Gb	to check	No	Yes	2015	
martphone	https://www.gsmarena.c	Hexa-core (4x1.4 GHz Cortex-A53 & 2x1.8 GHz Cortex-A57)	2Gb	8.1.0	No	Yes	2015	
martphone	https://www.gsmarena.c	Hexa-core (4x1.4 GHz Cortex-A53 & 2x1.8 GHz Cortex-A57)	2Gb	6.0.1	to check	Yes	2015	Yes
martphone	https://www.gsmarena.c	Hexa-core (4x1.4 GHz Cortex-A53 & 2x1.8 GHz Cortex-A57)	2Gb	to check	No	Yes	2015	
martphone	https://www.gsmarena.c	Qualcomm MSM7227 ARM1136EJ-S (1x600 Mhz)	418Mb	2.2	No	No	2010	
martphone	https://www.gsmarena.c	Octa-core (2x2.2 GHz Cortex-A73 & 6x1.6 GHz Cortex-A53)	4gb	8.0.0	No	Yes	2018	
martphone	https://www.gsmarena.c	Octa-core (2x2.2 GHz Cortex-A73 & 6x1.6 GHz Cortex-A53)	4gb	8.0.0	No	Yes	2018	
martphone	https://www.gsmarena.c	Octa-core (2x2.2 GHz Cortex-A73 & 6x1.6 GHz Cortex-A53)	4gb	8.0.0	No	Yes	2018	
martphone	https://www.gsmarena.c	Octa-core (2x2.2 GHz Cortex-A73 & 6x1.6 GHz Cortex-A53)	4gb	8.0.0	No	Yes	2018	
martphone	https://www.gsmarena.c	Octa-core (2x2.2 GHz Cortex-A73 & 6x1.6 GHz Cortex-A53)	4gb	8.0.0	No	to check	2018	
martphone	https://www.gsmarena.c	Octa-core (2x2.2 GHz Cortex-A73 & 6x1.6 GHz Cortex-A53)	4gb	8.0.0	No	to check	2018	
'R visor	https://vr.google.com/da	-	-	-	- 6	-	-	-
martwatch	https://www.samsung.co	-	-	-	70	-	-	-
martphone	https://www.gsmarena.c	-	8Gb	to check	to check	to check	2020	No
martphone	https://www.gsmarena.c	-	8Gb				2021	No

		8Gb			
Raspberry Pi Camera Module V2	Module	https://www.raspbe	Locker 14		
Raspberry Pi Camera Module V2	Module	https://www.raspbe	Locker 14		
Raspberry Pi Powerpack v2.0	Energy Comp	ponent	Locker 14		
Raspberry Pi Powerpack v2.0	Energy Comp	onent	Locker 14		
Raspberry Pi Powerpack v2.0	Energy Comp	onent	Locker 14		
Raspberry Pi Powerpack v2.0	Energy Comp	onent	Locker 14 Locker 14		
Raspberry Pi Powerpack v2.0	Energy Comp	onent			
Raspberry Pi Powerpack v2.0	Energy Comp	onent	Locker 14		
TurtleBots					
TurtleBot3 Burger (customized with	IN/ Robot	https://www.robotis.	Tahsin		
RaspberryPi Camera	Module		Tahsin		
Energy Monitor Device	Device		Tahsin		
TurtleBot3 Burger	Robot	https://www.robotis.	Locker 13		
Energy Monitor Device	Device		Locker 13 on TurtleBot		
Raspberry Pi Camera Module V2	Module	https://www.raspbe	Locker 13 on TurtleBot		
TurtleBot3 Burger	Robot	https://www.robotis	Locker 13		
INA219 DC Current Monitor	Sensor	https://www.adafruit	Locker 13 on TurtleBot		
TurtleBot3 Burger	Robot	https://www.robotis.	Locker 13		
TurtleBot3 Burger			? Lended ?		
Arduino					
Arduino Nano Atmega328	Microcontroll	er https://store.arduing	Tahsin		
Arduino Nano Atmega328	Microcontroll	er https://store.arduing	Vincenzo		
Arduino Nano Atmega328	Microcontroll	er https://store.arduing	Locker 14		
Arduino Nano Atmega328	Microcontrolle	er https://store.arduing	Locker 14		
Arduino Nano Atmega328	Microcontrolle	er https://store.arduing	Locker 14		
Arduino Nano Atmega4809	Microcontrolle	er https://store.arduing	Locker 14		
Arduino Nano Atmega4809	Microcontrolle	er https://store.arduing	Locker 14		
Arduino Nano Atmega4809	Microcontrolle	er https://store.arduing	Locker 14		

Grading

- Team project (100% of the final grade)
 - start day-1 with the project work

 - teams of 5 students
- Aims:
 - to put in practice what you will learn
 - to develop your technical skills

Start forming teams NOW!

Schedule and deliverables

- **Deliverable 1** (20% of the final grade)
 - Experiment goal, scope description, and related work
 - Deliverable:
 - written report
 - Deadline: 15 September: 23:59
- Deliverable 2 (30% of the final grade)
 - Detailed design of the experiment
 - Deliverable:
 - written report
 - Deadline: 29 September: 23:59
- Deliverable 3 (50% of the final grade)
 - Final report of the experiment
 - Deliverables:
 - written report
 - GitHub repository containing:
 - experiment execution scripts and source code
 - raw data and analysis scripts in R
 - YouTube video presenting your experiment
 - Deadline: 20 October: 23:59

Grading

To pass the course the following conditions must be met:

- The score of each assignment must be 6.0 or higher
- The final weighted grade of all assignments must be 6.0 or higher
- YouTube video completed
 - ~15 minutes in total, with each team member presenting ~3 minutes

Deadlines and slip days:

- Deadlines are firm
- Violating deadlines means losing slip days
- You have <u>3 slip</u> days per team
 - You decide how to spend them
- Your assignment will be marked fail if you will use more than 3 slip days

Relationship with lectures and labs

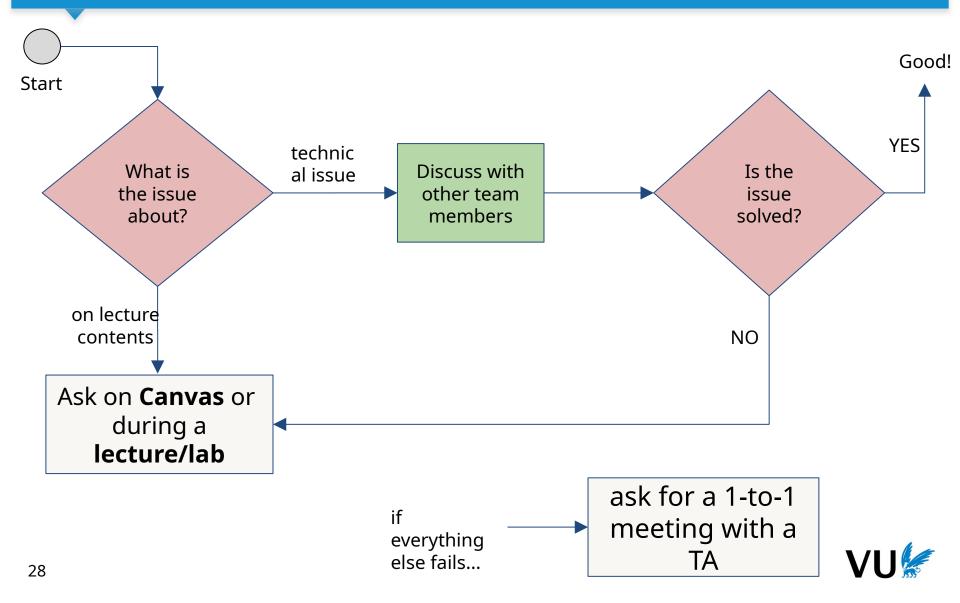
Attendance to all lectures and labs is <u>MANDATORY</u>

Each lecture/lab will correspond to a specific part of your project

- → you can look at how each part should be done
- → you can ask questions interactively
- → you start reasoning concretely on your project

Misinterpreting or not applying what the lecturer/TA teaches will result in failing the course

for example: using R for data analysis is mandatory


Fraud

Information exchange and collaboration are fully allowed within each single team, cases of plagiarism or inter-team collaboration and assignment contents exchange will be reported to and managed by the official fraud committee.

The use of generative AI to create ready-made content in assignments is considered fraud (*still, you can use it for grammar checks and polishing your English*).

In case of fraud, the consequences of those acts may potentially lead to: formal warning, inclusion of the formal warning in your VU student file, suspension from education and exams for up to one year.

Communication

This course is about opportunities

Other publications: https://s2group.cs.vu.nl/pages/greenlab

First action!

- Form your team (by today!)
 - fill this form:
 - https://forms.gle/oroasFK1fkn62uq5A
 - <u>on September 8</u> I will finalize the teams on Canvas
- Start getting familiar with technologies
 - Experiment Runner
 - https://github.com/S2-group/experiment-runner
 - Android Debug Bridge (ADB)
 - https://developer.android.com/studio/command-line/adb.html
 - Android Runner
 - https://github.com/S2-group/android-runner

